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NONLINEAR COMPARISON OF HIGH-ORDER AND OPTIMIZED

FINITE-DIFFERENCE SCHEMES

R. Hixon

Institute for Computational Mechanics in Propulsion (ICOMP)

NASA Lewis Research Center, Cleveland, OH 44135

Abstract

The effect of reducing the formal order of accuracy of a finite-difference scheme in order to

optimize its high-frequency performance is investigated using the 1-D nonlinear unsteady inviscid

Burgers' equation. It is found that the benefits of optimization do carry over into nonlinear appli-

cations. Both explicit and compact schemes are compared to Tam and Webb's explicit 7-point

Dispersion Relation Preserving scheme as well as a Spectral-like compact scheme derived follow-

ing Lele's work. Results are given for the absolute and L2 errors as a function of time.

Introductign

Computational aeroacoustics is concerned with the time-accurate solution of flow and acous-

tic phenomena over long periods of time. To accomplish this goal, high-order finite-difference

schemes and optimized schemes have been developed [e.g., Refs 1-8].

There are two main classes of high-accuracy finite-difference schemes: explicit schemes and

compact schemes. Explicit schemes employ large computational stencils for accuracy, while com-

pact schemes use smaller stencils by using the flux derivatives as independent variables at each

grid point. While compact schemes are more accurate than the equivalent explicit scheme, solving



for eachflux derivativerequiresascalartridiagonalor pentadiagonalmatrix inversion1.Recently,

however,annewprefactorizationmethodhasbeenintroducedthat allowsthematricesto bepref-

actoredinto two easierto solvematrices7'8.

Therearealsotwo strategiesfor designingfinite-differencestencils.For a givenstencil,one

caneither choosecoefficientsthat return the highestformal order of accuracypossible,or the

stencilcanbeoptimizedto reducehigh-frequencyerrorsat theprice of loweringtheformal order

of accuracy.This optimizationworkhasbeenusedfor bothcompact1andexplicit3stencils.

In thiswork, thenonlinearperformanceof optimizedschemeswill beinvestigatedusingthe 1-

D unsteadyBurgers'equation.

Mathematical and Numerical Formulation

Given a function f(x), a general finite-difference central derivative at grid point n can be writ-

ten as:

NJ

j=l

NI

+;] = E a,tf,,+i- f,,-il
i=l

(1)

The right-hand-side of Eq. (1) determines if the differencing scheme is explicit or compact.

For a compact differencing scheme, each derivative depends on the value of its neighboring deriv-

atives; thus, a scalar matrix inversion is required to obtain the values of the derivatives. For an

explicit differencing scheme, however, the value of each derivative is independent of its neigh-

bors.

The error term is a function of the order of accuracy of the scheme. To estimate the magnitude
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of the error, we follow the work of Lele ] and Tam and Webb 3. Let us assume that the function we

are taking the numerical derivative of is a sine wave of period one:

f- sin(2_x)

df = 2_cos(2_x)
dx

(2)

where -0.5 < x < 0.5. We have a given number of points per wavelength:
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Thus,thefunctionat thegrid pointscanbewrittenas:

fi = sin (2nizS_x) (4)

and the numerical derivative at x = 0 becomes:

NJ NI

(_x)o+Error+ ___bj[(-_x)_.i+(-_x)jJ= __2aisin(21tiAx) (5)
j=l i=1

The coefficients for the schemes investigated are given in Table 1.

The error in a central derivative is dispersive, and the numerical derivative takes the form:

Figure 2:
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d o

-wSln(2nx) = 2rl:(1 - e) cos (2rcx)
ax

(6)

Using this definition, the derivative at x=O can be written as:

m 12bj[cos(2niAx)]

j=l

NI

2aisin(2niAx)

i=1

(7)

The error at x = 0 can then be written as:

Error = 2_E =

NI

___ 2aisin(2raAx)

i--I

( ,1/1 + 2bj[cos(2niAx

j=l

(8)

Table 1: Finite-Difference Scheme Coefficients

Order of
Scheme bl a I a2 a3

accuracy

explicit 4 0 2/3 1/12 0 4

7-point 0 0.7708824 -0.1667059 0.0208431 4
DRP

explicit 6 0 3/4 -3/20 1/60 6

compact 4 1/4 3/4 0 0 4

optimized 0.35196 0.7839867 0.0339867 0 4

compact

compact 6 1/3 7/9 1/36 0 6



Figure 1 showsthe error magnitudeasa function of the numberof pointsper wavelength.

Notice the wide rangeof errors for different schemeseventhoughthey havethe sameorderof

accuracy.Figure2 showsthe orderof accuracyasa function of thenumberof pointsperwave-

length. Noticethat it requires25-40pointsperwavelengthfor the schemesto settleto their for-

malorderof accuracy.In practice,thismanypointscannotbeuseddueto computerlimitations.

In Fig. 1,thetwo optimizedschemesshowsimilarerrorcurves.Theeffectof theoptimization

is to increasetheresolutionof theschemewith fewpointsperwavelengthby loweringtheformal

orderof accuracy,andhencereducingtheperformanceof theschemewith manypointsperwave-

length, The curvesin Fig. 1 showthat the optimizedschemesalwaysperformbetter than the

unoptimizedschemeof thesameorderof accuracy(while alsorequiting morework). Thecurves

alsoshowthatthereis arangewheretheoptimizedschemewill bemoreaccuratethana higher-

orderschemeusingthesamestencil,but this rangeis fairly limited.

For a linearproblemwith a smallrangeof frequencies,theoptimizedschemecanbemadeto

outperformthe higher-orderscheme.However,with a changein grid spacing,thehigher-order

schemecanalsobemadeto outperformtheoptimizedscheme.As thefrequencyrangeincreases,

it becomeslessclearwhich schemeprovidesabettersolution.

In anumsteadynonlinearproblem,however,thefrequencyrangechangesastime progresses.

An exampleof anonlinearequationis the inviscid1-DBurgers'equation:

OU _/rl 2_

,9-7+ t,y.u ) = o (9)

it

_'1!i



Givenan initial single-frequencyperiodicsolutionon thedomain0 < x < 1:

u(x, O) = c o + Asin(2rcx), (10)

the solution can be written as:

u(x, t) = u(_, O) = co +Asin(2rc_) (11)

where

(12)

However, at time:

1
t = (13)

2/r.A

a shock forms as the wave steepens, and the shock is located using Whitham's area rule9:

0
t = (14)

2_Asin0



(15)

(16)

u1 = c0+Asin(2x_l) (17)

u 2 = co+Asin(2x_ 2) (18)

The remaining part of the solution is found using Eq. (11).

Figure 3 shows a solution of Burgers' equation, with the initial condition:

3 lsin(2xx)u(x,o) = 3+i (19)
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Figure 3: Solution of 1-D Nonlinear Burgers' Equation With Single-Frequency Input
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In this solution, the wave steepens as it travels, forming a shock at time = 0.637. As time pro-

ceeds, the lower-frequency waves transfer more and more energy to the high-frequency waves, as

illustrated in Fig. 4.

Since this is the inviscid Burgers' equation, the shock has no thickness. This means that there

is no upper limit to the frequencies in the solution once the shock appears. Numerically, this

means that there is no grid spacing that will resolve the shock.

Since this equation allows unlimited frequency growth and has an exact solution, it was used

to compare the nonlinear performance of the six schemes given in Table 1.

Numerical Test Description

Two numerical tests will be shown. Test 1 has the initial distribution:
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Figure 4: Frequency Content as a Function of Time for Solution of Burgers' Equation



u(x, 0) = _, + sin(2rcx) (20)

while Test 2 has the initial distribution:

31u(x, 0) = _ + sin(2r_x) (21)

In Test 2, the lower amplitude of the sine wave reduces the rate of growth of the high-fre-

quency modes, causing the wave to steepen more slowly. This lesser rate of nonlinearity will

allow more time for any advantages of optimization to be shown before the high-frequency waves

move into the unresolved range.

The grid for this problem has 24 equally spaced points, giving 24 points per wavelength for

the initial wave. From Fig. 2, this corresponds roughly to the minimum number of points for each

scheme to obtain its formal order Of accuracy. This is also more than the number of points usually

used for linear wave propagation in computational aeroacoustics calculations. The domain is peri-

odic in order to remove the effect of boundary stencils and boundary condition specification from

the results. The periodic domain may favor the compact schemes more than the explicit schemes,

due to the effects of boundary stencil specifications on compact schemes 1°.

The time stepping method used is Stanescu and Habashi's 11 fourth-order nonlinear extension

of Hu's 5-6 optimized Runge-Kutta method 12. The time step used is CFL = 0.025. The small time

step is used to ensure that the error is from the spatial discretization and not the time marching

scheme.

10
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The compact differences are prefactored using Hixon and Turkel's method 7, and calculated

using the method described by Hixon 8. The forward and backward stencils for the optimized com-

pact scheme are given as:

(I-o_)DF+ctDF+I = _fi+l +(I-213)fi+(_- l)fi_ I

(I-0_)D B+0_D/B_I = (l-_)fi+l +(213- l)fi-_fi_ I

(22)

where

= 0.29157494 (23)
= 0.86318328

Results

Calculations were performed for Tests 1 and 2. No filtering or artificial dissipation terms were

added; while the solutions would be improved by filtering out unresolved frequencies, it was

found that the error due to the filtering overwhelmed the errors from the schemes as the shock

formed. The reason was that the 10th and 12th order explicit filters that were tested damped high

frequency components of the solution that the more accurate compact schemes could resolve.

Results are shown for the error amplitude as a function of time for each numerical scheme.

Both the L 2 and max error norms are shown. It was found that the max norm favored the opti-

mized schemes, while the L 2 norm was weighted more toward the high-order schemes. Since the

L 2 norm contains both the low-frequency and high-frequency error components, it was considered

to be the more accurate measure of error for this problem.
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Figures 5 and 6 show the error time history for Test 1. In both figures, we see the initial advan-

tages of the high-order schemes. However, at time = 0.2, the wave has steepened to a point that

high-frequency components of the solution exist. After this point, the optimized schemes perform

equal to or slightly better than the high-order schemes with the same stencil size. This is more

apparent using the max norm of error, but also is shown in the L 2 norm of the error.

Figures 7 and 8 show the error time history for Test 2. Notice that the shock takes much longer

to form in this test. In Figs. 7 and 8, the same behavior is shown as in Test 1, with the optimized

schemes showing more error reduction. This is due to the slower growth of high-frequency com-

ponents in this test. Figure 8 shows that the max error norm is significantly lower with the opti-

mized schemes, while Fig. 7 shows that the improvement is still seen in the L 2 norm results.

Conclusions

A nonlinear comparison of optimized and high-order finite-difference schemes has been per-

formed using the 1-D inviscid Burgers' equation. From these simple tests, several conclusions can

be drawn.

First, the compact schemes perform better than the explicit schemes, usually giving an order

of magnitude reduction in the errors.

Second, the formal order of accuracy of a scheme is much less important than its performance

at marginal resolution. Again, this is shown by the performance of the compact schemes and opti-

mized schemes for these test problems.

Third, in most realistic nonlinear calculations, there will be areas of marginal resolution in the

grid. The error due to these areas will dominate the error in the solution. The improved perfor-

mance of the optimized schemes at marginal resolution can more than compensate for the slightly

14



increased error in fully resolved regions.

In summary, while these results are necessarily not general, they do indicate that the opti-

mized schemes show an advantage for nonlinear problems as well as linear problems due to their

improved performance at marginal resolution. Since the high-frequency waves are the major

source of error, the gain from optimization more than offsets the loss of formal accuracy for both

explicit and compact differencing schemes in these tests.
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